
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

$This paper

July 2006.
�Correspond
E-mail addr
Journal of Sound and Vibration 310 (2008) 433–441

www.elsevier.com/locate/jsvi
Short Communication

Large deflections and vibration of a tapered cantilever
pulled at its tip by a cable$

David B. Hollanda, Lawrence N. Virgina,�, Raymond H. Plautb

aSchool of Engineering, Duke University, Durham, NC 27708-0300, USA
bDepartment of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Received 6 April 2006; received in revised form 2 October 2006; accepted 27 June 2007

Available online 14 September 2007
Abstract

The behavior of a slender, tapered, cantilever beam loaded through a cable attached to its free end is described. Large

static deflections are computed (based on an elastica description) together with natural frequencies and mode shapes for

small-amplitude vibrations about equilibrium. Experimental results exhibit good agreement with the theoretical results.

r 2007 Published by Elsevier Ltd.
1. Introduction

Square, kite-shaped solar-sails utilize highly flexible booms that may buckle. These buckled booms may be
used to impart tension into a solar sail membrane. A related problem is the behavior of a cantilever pulled at
its tip by a cable. The other end of the cable is assumed to be located near the fixed end of the cantilever, and a
device such as a turnbuckle is used to shorten the cable. Deformation of the beam occurs as soon as the ends of
the cable move toward each other. The deflections become large as the cable is shortened. These equilibrium
shapes are investigated, as well as small vibrations about equilibrium.

Critical loads for a cantilever subjected to a load that passes through its base or another point on
the original axis of the beam were presented by Timoshenko and Gere [1] and verified experimentally
by Willems [2]. Vibrations about the straight prebuckled equilibrium configuration were examined by Huang
et al. [3], Anderson and Done [4], Sugiyama et al. [5], and Xiong et al. [6]. Mladenov and Sugiyama [7]
investigated postbuckled equilibrium shapes.

Here, the cable does not pass through a specific point along the beam’s axis, but ends at a point that is
slightly offset from the beam’s base. The problem does not involve a critical load (or critical shortening of the
cable) at which the beam departs from a straight shape. Instead, as the cable is shortened, the beam bends.
This problem was studied by Holland et al. [8] in the case of a prismatic beam (i.e., with constant bending
stiffness with respect to the plane of buckling). It may be advantageous to vary the cross-section of the beam
ee front matter r 2007 Published by Elsevier Ltd.
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along its length, such as for the purpose of reducing the weight, which should be as low as possible for
applications in space. It is assumed in this paper that the width of the beam decreases linearly from the beam’s
base to its tip. Deflections and vibrations are investigated.

A few studies involving buckled beams will be mentioned. Buckling loads for tapered beams were examined
in Refs. [1,9,10], among others. Postbuckling was considered in Refs. [11–13]. Salter [14] conducted
experiments on steel beams. Finally, vibrations were investigated in [15,16].

An analysis of the problem under consideration is described in the next section. In subsequent sections, the
experimental procedure is presented, followed by results and concluding remarks.

2. Analytical formulation

The beam is shown in Figs. 1 and 2. It is linearly elastic with modulus of elasticity E, density r, and
length L, and is modeled as an inextensible elastica. Gravitational effects and damping are neglected.
Two-dimensional deflections in the x2y plane are considered. The coordinates of points on the beam are
xðs; tÞ and yðs; tÞ, where s is the arc length and t is time. The rotation is yðs; tÞ. The depth of the cross-section is
θ
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Fig. 1. Geometry of beam-cable system.
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Fig. 2. Cantilever with rectangular cross-section of constant depth and linearly tapered width.
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c, and the width of the cross-section decreases linearly from h0 at s ¼ 0 to hL at s ¼ L. The taper ratio is
defined as a ¼ hL=h0, so that a ¼ 1 for the prismatic case. The mass per unit length mðsÞ and the bending
stiffness EIðsÞ with respect to the plane of buckling are both proportional to the width hðsÞ, and hence their
ratio mðsÞ=ðEIðsÞÞ is constant.

As depicted in Fig. 1, the cable connects point B, the tip of the beam, with point C, where ðx; yÞ ¼ ða; bÞ. The
bending moment in the beam is Mðs; tÞ, and the internal force has components Pvðs; tÞ and Phðs; tÞ parallel to
the �x and �y axes on a positive face, respectively. Therefore the cable tension PðtÞ has components PvðL; tÞ
and PhðL; tÞ. From geometry, the moment–curvature relation, and dynamic equilibrium, the governing
equations for the beam are:

qx=qs ¼ cos y; qy=qs ¼ sin y,

qy=qs ¼M=EI ; qM=qs ¼ Ph cos y� Pv sin y,

qPv=qs ¼ �m q2x=qt2; qPh=qs ¼ �m q2y=qt2. ð1Þ

The boundary conditions are xð0; tÞ ¼ 0, yð0; tÞ ¼ 0, yð0; tÞ ¼ 0, MðL; tÞ ¼ 0, ½yðL; tÞ � b�PvðL; tÞ ¼ ½xðL; tÞ � a�

PhðL; tÞ.
The subscripts e and d are used to denote equilibrium and dynamic quantities, respectively. The equilibrium

equations are:

dxe=ds ¼ cos ye; dye=ds ¼ sin ye,

dye=ds ¼Me=EI ; dMe=ds ¼ Phe cos ye � Pve sin ye, ð2Þ

where Phe and Pve are constant. The dynamic quantities are small and have frequency o. They are governed by
the linear equations

dxd=ds ¼ �yd sin ye; dyd=ds ¼ yd cos ye,

dyd=ds ¼Md=EI ; dMd=ds ¼ Phd cos ye � Pvd sin ye � ydðPhe sin ye þ Pve cos yeÞ,

dPhd=ds ¼ mo2xd ; dPvd=ds ¼ mo2yd . ð3Þ

The boundary conditions are obtained from the ones listed above, as well as the assumption that the cable is
linearly elastic and acts like a spring with stiffness k [8].

Numerical solutions for equilibrium and then for vibration are obtained with the use of shooting methods in
Matlab [17]. The quantities a, b, L, E, r, c, h0, hL, and k are specified, and the unknown parameters and
conditions at s ¼ 0 are varied until the known conditions at s ¼ L are satisfied with sufficient accuracy.

3. Experiments

Experiments were performed on linearly tapered polycarbonate beams. The set-up consisted of a beam
sample clamped between two steel plates, and mounted to a small-amplitude (4mm) dynamic shaker. A steel
cable with an approximate length of 711mm, diameter of 0.46mm, and axial stiffness of k ¼ 12:4N=mm was
attached to the free end of the beam. The cable was connected to a small turnbuckle, which was attached to a
load cell that could be moved to different offsets from the base of the beam. A photographic image of the test
set-up is shown in Fig. 3.

Five different beam shapes were tested, with L ¼ 737mm, c ¼ 4:67mm, E ¼ 1:8GPa, rg ¼ 1113 kg=m3,
h0 ¼ 31:72mm, and hL ¼ 6:35; 12:7; 19:05; 25:4, and 31.75mm (i.e., taper ratios a ¼ 0:2; 0:4; 0:6; 0:8, and 1.0).
The end C of the cable in Fig. 1 was placed with a ¼ 28:575mm (i.e., a=L ¼ 0:0388) and four different values
of b: 15.875, 25.4, 38.1, and 50.8mm (i.e., b=L ¼ 0:0216; 0:0345; 0:0517, and 0.069).

A reflective target point was selected near the end of the beam to gather velocity information during the
dynamic measurements. An accelerometer mounted on the clamping plates was used to measure the
acceleration at the base of the beam. The acceleration was numerically integrated by the data acquisition
system to provide the velocity input to the system. The shaker was used to excite the system with bandlimited
random noise (1–100Hz). This frequency region contains the first four natural frequencies of the system.
The frequency response relating the velocity at the base (the input) to the velocity near the end of the beam
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Fig. 3. The experimental configuration.
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Fig. 4. Sample frequency-response plot from experiments.
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(the output) was estimated for each applied cable tension level. The H3 frequency response estimate was
calculated using the input velocity power spectral density, the output velocity power spectral density, and the
velocity cross-spectral density between the input and output signals. Each spectral density estimate was
derived from 10 discrete Fourier transforms of 8 s duration segments of sampled input and output data, each
windowed with a Hanning window. The overlap between segments was 66%. A sample frequency-response
plot is shown in Fig. 4, with the abscissa in Hz and the ordinate in dB.

4. Results

The material and geometric parameters from the experiments are also used in the numerical analysis. Thus
only the transverse offset b, taper ratio a, and cable tension P need to be listed in the results presented in this
section.
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Fig. 5. Variation of first four vibration frequencies with cable tension for prismatic beam (a ¼ 1, continuous line) and for tapered beam

(a ¼ 0:2, dashed line) when b=L ¼ 0:0216.

Fig. 6. Mode shapes from numerical analysis when b=L ¼ 0:0216, a ¼ 0:2, and P ¼ 2:71N: (a) first mode, (b) second mode, (c) third

mode, (d) fourth mode. The dashed line indicates the equilibrium position.
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The relationships between the cable tension P and the first four vibration frequencies (on, n ¼ 1; 2; 3; 4) are
shown in Fig. 5 for the prismatic beam and the tapered beam with a ¼ 0:2 when b=L ¼ 0:0216. The cable
tension P is normalized by the critical load P0 for the prismatic beam with no offset ðP0 ¼ p2EI=ðL2Þ ¼

8:76NÞ and each frequency on is normalized by the fundamental frequency o0 of the prismatic beam under no
load ðo0 ¼ 3:516ðEIÞ1=2ðrh0cL4Þ

�1=2
¼ 11:1 rad=sÞ. As the cable is tightened, the first (fundamental) frequency

tends to decrease as P approaches its critical value for the case of no offset (i.e., if a=L ¼ b=L ¼ 0), and then to
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increase as P is increased further. The other three frequencies in Fig. 5 tend to behave oppositely near the
critical load, increasing and then decreasing. Then they tend to increase again as the load passes another
threshold.

Fig. 6 depicts the equilibrium shape and the first four mode shapes obtained numerically when
b=L ¼ 0:0216, a ¼ 0:2, and P ¼ 2:713N. Only small vibrations about equilibrium are analyzed, but the
amplitudes are magnified in Fig. 6 so the modes can be clearly seen. The nth vibration mode has n� 1 internal
nodes. In these mode shapes, the largest deflection occurs at the tip of the beam.

The effects of the cable tension on the transverse tip deflection (in equilibrium) and the first four vibration
frequencies are depicted in Figs. 7 and 8 for taper ratios a ¼ 0:8 and 0.2, respectively. The tip deflection yeðLÞ

is normalized by the beam length L ¼ 737mm. Numerical solutions are depicted by solid curves. Circles
denote mean values of the experimental results, with possible errors of approximately 5%. The numerical and
experimental results exhibit good agreement.

As the taper ratio a decreases, the amount of material decreases and the zero offset critical load
decreases (i.e., it is equal to 7.87, 6.94, 5.96, and 4.85N, respectively, for a ¼ 0:8; 0:6; 0:4, and 0.2). Hence
the first frequency veers toward smaller values, and the next three frequencies veer toward larger
values at a lower load in Fig. 8 than in Fig. 7. The mass and bending stiffness of the beam both
decrease as a decreases, and these effects tend to counteract each other, so the frequencies tend to be in similar
ranges in Figs. 7 and 8. The load at which the tip deflection has a relative maximum in Fig. 8 is lower than
in Fig. 7.

Moving the cable’s lateral attachment point away from the beam (i.e., increasing b=L) may be interpreted as
increasing the amplitude of an imperfection. In the equilibrium plots, the slope of the initial part of the curve
decreases as b=L increases. The load for which the tip deflection has a relative maximum in Fig. 7 is almost the
same for the four values of b=L, and a similar property holds in Fig. 8.
5. Concluding remarks

A thin cantilevered beam, compressed by a cable attached to the tip and terminating near the base, was
considered. This system is related to solar-sail structures in which a structural boom bends in order to put the
sail membrane under tension. In the analytical part of the study, a shooting method was used to obtain
numerical solutions for the equilibrium shapes (including large deflections) and for small vibrations about
equilibrium. In the experimental part of the study, a polycarbonate strip was bent by a cable that was
tightened with a turnbuckle. Four different cable attachment points near the beam’s base were considered.
The first four frequencies and mode shapes were determined.

The width of the beam was tapered linearly. Four different amounts of taper were examined, along with the
case of a prismatic beam. Results from the experiments were close to those from the numerical procedure
based on an inextensible elastica and a linearly elastic cable with no inertia or bending.

Due to the offset of the cable attachment from the base of the beam, the problem does not involve
buckling of a straight member loaded axially. Instead, the beam deflects as soon as the cable is tightened,
like a column with an imperfection. The tip of the beam moves away from the original axis, and after a
certain threshold tension the tip moves toward the axis. Also, as the cable tension is increased from zero,
the first frequency initially decreases and then increases. The next three frequencies tend to increase
initially (although the third and fourth frequency may exhibit very little change for sufficiently small
tensions), then decrease, and then increase again as the cable tension becomes large and the beam becomes
severely bent.

Results were presented for taper ratios a ¼ 0:8 and 0.2, where a is the ratio of the width of the beam at the
tip to that at the base. Further results for a ¼ 1 (prismatic beam), 0.6, and 0.4 can be found in Ref. [18]. As the
cable is tightened, the lateral tip deflection is larger if a is smaller (i.e., if the taper angle is larger and the beam
has less material). The general behavior of the frequencies as the tension is increased is similar for different
taper ratios. Lateral offsets of the fixed end of the cable ranged up to 0:069L, where L is the beam length. With
larger offset, the initial deflections increased, but again the forms of the tension-frequency plots of the first
four frequencies did not change significantly.
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Fig. 7. Equilibrium plots (normalized cable tension versus normalized transverse tip deflection), and variation of first four normalized

vibration frequencies with normalized cable tension, for a ¼ 0:8 and b=L ¼ 0:0216 (parts (a) and (b)), 0.0345 (parts (c) and (d)), 0.0517

(parts (e) and (f)), and 0.069 (parts (g) and (h)). Circles represent experimental results.
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